
The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823

A Proposed Method for Designing Diagnostic
Mathematics Tests

Kevin K. H. Cheung
kevin.cheung@carleton.ca

School of Mathematics and Statistics
Carleton University

1125 Colonel By Drive
Ottawa, ON K1S 5B6

Canada

Brett Stevens
brett@math.carleton.ca

School of Mathematics and Statistics
Carleton University

1125 Colonel By Drive
Ottawa, ON K1S 5B6

Canada

Yunkai Wang
YunkaiWang@cmail.carleton.ca

School of Computer Science
Carleton University

1125 Colonel By Drive
Ottawa, ON K1S 5B6

Canada

Abstract

A method based on mathematical results from non-adaptive group testing and com-
binatorial design theory for designing diagnostic mathematics tests containing multi-skill
questions is described. The goal is to minimize the number of questions asked while cover-
ing a large list of skills without sacrificing the ability to pinpoint deficiencies in individual
skills provided that the number of deficiencies to identify is low. A set of tools developed
in Python 2.7 demonstrating the method is available as a free download for real-life testing
needs or research in mathematical knowledge assessment.

The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823

1 Introduction

To be successful in a first-year university calculus course, competence in high school mathemat-
ics is required. Developing such competence requires the mastery of many skills such as laws
of arithmetic, manipulating algebraic expressions, solving equations, graphing, etc. Having a
robust way to test mastery of these skills and identify deficiences can help improve student
support initiatives and retention.

A straightforward approach to test mastery of skills is to assess each skill individually.
However, it is conceivable that the ability to perform a skill in isolation does not necessarily
mean that the skill can be performed in a broader context. For example, a student who is able
to evaluate 0.5− 1

3
and (26)

1
6 individually might fail to evaluate (26)0.5−

1
3 . Unfortunately, once

questions are allowed to contain multiple skills, it is not clear how individual deficient skills
can still be identified. To see the difficulty, say there are nine skills to be tested. If there are
only three questions, each of which tests three different skills such that no skill is tested twice,
then any wrong answer to any of the questions will leave us uncertain as to which of the three
skills in the question caused difficulty. The only way to tease out the deficient skill(s) is to add
additional test questions.

The central issue that is explored in this paper is the following: Given a set of skills such
that every small subset of these can be tested in a single question, how does one minimize the
number of multi-skill questions asked so that each skill is tested at least once and that there is
a way to identify deficient skills provided that the number of deficient skills is small? As stated,
the question contains certain ambiguities. For instance, it does not specify how many skills each
question can contain. It also makes no mention of what is meant by “the number of deficient
skills is small.” We will discuss these technical aspects after considering a detailed motivating
example. We will also give a brief description of the tools that we have developed and made
available for the interested readers to use to design their own tests. In the meantime, we point
out that our approach uses results in non-adaptive group testing from combinatorial design
theory. The possibility of using results in adaptive group testing is left for future investigation.
The reason for focussing on the non-adaptive setting first is that non-adaptive tests can be
administered on paper and at scale.

In a nutshell, group testing uses results in combinatorial designs to divide the work of
identifying “defects” into tests on groups of items rather than on individual ones. It was
first studied by Robert Dorfman [3] who proposed a way to perform blood tests on army
recruits during World War II though his method was never implemented. Over the years, many
constructions with good asymptotic bounds have been obtained with immediate applications
in large-scale problems such as software testing and the human genome project. In addition
to the successes in large-scale applications, group testing results could appear in small-scale
applications such as skills development and knowledge diagnostics as demonstrated by the work
described in this paper. For more details on the history, the mathematics and applications of
group testing, see [4] and the references therein.

373

The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823

2 Motivating example

Suppose that we want to design a test covering the following skills:

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Absolute value

6. Exponentiation

7. Logarithm

8. Factorial

9. Fraction-to-decimal conversion

We would like the test to contain questions that test multiple skills each. As an illustration,
a question that combines the second, the fifth, and the seventh skills could be the following:

Evaluate log3 |2− 5|.

If a test-taker gives the right answer, then we regard the test-taker to have no deficiency in
subtraction, absolute value, and logarithm. What happens if the test-taker gives an incorrect
answer? From just this question, there is no way of knowing which of the three skills in the
question is causing difficulty unless we have the luxury of looking at the written work of the
test-taker. If we want to be able to pinpoint deficiencies, we cannot simply partition the skills
into questions.

Consider the following test design consisting of ten questions, each of which tests a combi-
nation of three of the nine skills listed above:

Question Skills tested
1 1, 4, 7
2 1, 5, 9
3 1, 6, 8
4 2, 4, 9
5 2, 5, 8
6 2, 6, 7
7 3, 4, 8
8 3, 5, 7
9 3, 6, 9
10 4, 6, 8

374

The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823

As an example, the following test conforms to the design:

1. Evaluate log2

(
1+3
4

)
.

2. Evaluate
∣∣3 +

(
−5

4

)∣∣ . Express your answer as a decimal.

3. Evaluate (2! + 3)2

4. Evaluate (6− 2)/5. Express your answer as a decimal.

5. Evaluate |3− 4!|.

6. Evaluate log2(3
2 − 1).

7. Evaluate 3!× 20/5.

8. Evaluate log8 |(−2)× 4|.

9. Evaluate
(

1
10

)2×3
. Express your answer as a decimal.

10. Evaluate (−2)
4!
6 .

Suppose that a test-taker answered all the questions except questions 1, 6, and 8 correctly.
Since question 2 was answered correctly, we know that skills 1, 5, 9 are not deficient; from
question 3, skills 6 and 8 are not deficient; from question 5, skill 2 is not deficient; from
question 7, skills 3 and 4 are not deficient. Note that skill 7 cannot be eliminated. Hence, we
conclude that the test-taker was deficient in skill 7.

Notice that questions 1, 6 and 8, the questions that the test-taker answered incorrectly,
are the only questions that contain skill 7. In reality, the test-taker might not necessarily
answer all questions containing skill 7 incorrectly even with a deficiency in that skill. Now,
what if question 6 was answered correctly? Using the method just described would eliminate
all the skills, leading to the conclusion that the test-taker has no deficiency in any of the skills.
However, the fact that questions 1 and 8 were answered incorrectly tells us that there probably
was a deficiency somewhere. We will need a more sophisticated method for decoding test
results which we will discuss in a later section. In the meantime, we articulate some practical
considerations when combining skills and describe the mathematical tools we used for designing
tests.

3 Considerations for combining skills

One simplifying assumption that we make in this paper is that all the skills that one wants to
test can be arbitrarily combined. In practice, it may not make sense to combine certain skills.
For example, how would one combine curve-sketching and multiplication of quarternions? A
mechanism for encoding valid skill combinations is to use hypergraphs. However, except for
some easy special cases, designing tests taking into account the structure of such a hypergraph
is non-trivial and remains a direction for further research.

375

The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823

Even in the case when there is no inherent incompatibility of the topics of the skills to be
combined, one must exercise care in designing questions that test multiple skills. For example,
consider the following questions:

1. (3 + 1!)× 5

2. (3 + 1)!× 5

3. ((3 + 1)× 5)!

All of these questions test multiplication, addition, and factorial. However, they do not have
the same degree of difficulty. One can argue that the first question tests factorial only superfi-
cially. The third question is unsuitable as a test question because the answer is too large for a
typical diagnostic test. This example illustrates the need to exercise care and even ingenuity in
constructing pedagogically sound questions that combine specific skills. The conceptual frame-
work that we describe in the next section only provides a listing of which skills to combine for
each question. The actual design of test questions that are suitable for tests in real life is left to
test creators. Nevertheless, we show that it is possible to automate test-generation satisfying
some basic feasibility constraints in Section 5.

4 d-disjunct matrices

For our test designs, we used results from non-adaptive group testing in combinatorial design
theory. Before we go into the technical details, let us reframe the process of designing a test as
constructing a binary matrix with some desired properties.

Consider the test design described in the previous section. We can construct a 10×9 matrix
with rows representing the questions and columns representing the skills. The entries of the
matrix are determined as follows: If skill j is tested in question i, then the (i, j)-entry of the
matrix is 1; otherwise, it is 0. Thus, we have the matrix

1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0
0 0 1 0 0 1 0 0 1
0 0 0 1 0 1 0 1 0


In general, designing a test involving n skills amounts to constructing an appropriate binary

matrix of dimension t× n where t denotes the number of questions. For practical purpose, we
want t to be as small as possible subject to the following constraints:

376

The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823

• there cannot be a column of zeros (every skill is tested at least once);

• the number of ones in each row cannot be too large because there is a practical limit on
how many skills can be effectively combined into a single question;

• there is a positive integer d such that if a test-taker is deficient in no more than d skills
and answers incorrectly only questions that contain one or more of the deficient skills,
there is an efficient way to identify the deficient skills by looking at the test results.

It turns out that a good starting point for our construction is given by d-disjunct matrices
defined as follows:

Let t, n, d be positive integers. A t× n matrix M is said to be d-disjunct if for every subset
S ⊆ {1, . . . , n} having at most d elements, for every j /∈ S, there exists i ∈ {1, . . . , t} such that
the (i, j)-entry of M is 1 but the (i, k)-entry of M is 0 for all k ∈ S.

Constructing d-disjunct matrices with small t given n is non-trivial. One method that
we used with reasonable success is described in [6]. It is beyond the scope of this paper to
describe the technical details of our construction method. The interested reader is referred to
a forthcoming paper that explains the various techniques of obtaining d-disjunct matrices for
values of n that we are interested in. Note that the value d here is the number of deficient skills
that we want to be able to identify. To keep t to a reasonable number, d cannot be too large.
Based on our experiments, d should be chosen to be no more than 6. Otherwise, we will end
up with too many questions that make the tests impractical for real-life usage.

5 Experimental implementation

As a demonstration that automatic test-generation can be implemented based on the ideas
presented above, we developed an experimental GUI application written in Python 2.7 on
Ubuntu Linux 16.04 for generating tests from a predefined set of arithmetic skills. In this
section, we give only a brief description of the application. The reader is refered to [1] for a
detailed description and the source code of the application.

The GUI application allows the user to select a subset of these skills to be tested and spec-
ify the maximum number of skills that can appear per question and the maximum number of
deficient skills to be identified. Figure 1 is a screenshot for the skill selection window. The ap-
plication automatically determines the number of questions to include in the test by generating
an appropriate d-disjunct matrix and then generates questions with random numbers subject to
some intelligent choices that ensure intermediate and final answers (especially when the skills
involve certain operations such as exponentiation and factorial) do not become unwieldy. After
administrating the test, the user can obtain an assessment of the test results by using another
application to process a user-created CSV file containing the test results. A sample test gen-
erated by the application that tests addition, subtraction, multiplication, exponentiating, and
absolute value with at most four skills per question is included in the appendix.

In addition to the GUI application, we have developed a simple web server in Python using
the Flask1 web development framework for users who simply wish to obtain test designs (that is,

1http://flask.pocoo.org/

377

http://flask.pocoo.org/

The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823

Figure 1: Screenshot of skill selection window

d-disjunct matrices) instead of generated tests for predefined skills. The server can be deployed
locally or remotely in a server. It allows users to access a user interface using a web browser to
generate a number of different constructs which include d-disjunct matrices. As a result, users
can apply the test designs to domains other than math.

Installation and usage details about the test-generation application and the server can be
found in [1].

6 Discussion

We now consider a number of issues that cannot be ignored if the ideas presented so far are to
be used in real-life testing. There are two big assumptions that we have made:

1. Skills can be arbitrarily combined.

2. Test-takers always answer questions that contain a deficient skill incorrectly and questions
that do not contain a deficient skill correctly.

The first of these assumptions has already been discussed in Section 3. We now address the
second assumption.

It is possible that a question is answered correctly because of luck rather than competence.
It is also possible that a question is answered incorrectly because of carelessness rather than
deficiency in one or more of the skills tested. Though the former is less likely than the latter, it

378

The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823

cannot be completely disregarded because using the naive method of removing skills in questions
that have been answered correctly from the list of possible deficient skills could lead to overly
optimistic conclusion. We now illustrate a more sophisticated method for decoding test results
using a standard idea from error-correcting codes. Consider again the d-disjunct matrix that
we constructed earlier: 

1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0
0 0 1 0 0 1 0 0 1
0 0 0 1 0 1 0 1 0


This matrix is in fact 1-disjunct. That means we can identify up to 1 deficient skill with a test
designed using this matrix.

For i = 1, . . . , 9, let c(i) denote the ith column of this matrix. Then c(1), . . . , c(9) are binary
vectors of size ten. To decode a test result, form a binary vector r of size ten as follows: Set
the ith component of r to 1 if question i is answered incorrectly and 0 otherwise. We call r
the result vector. For example, if questions 1 and 6 are the only questions that are incorrectly
answered, then

r =



1
0
0
0
0
1
0
0
0
0


.

Given two binary vectors u and v having the same size, the Hamming distance between u and
v is defined as the number of components in which u and v differ. For example, the Hamming
distance between c(1) and c(2) is 6 whereas the Hamming distance between c(1) and c(4) is 5.
To decode the test results, we simply search for a k ∈ {1, . . . , 9} that minimizes the Hamming
distance between r and c(k). In this case, there is a unique choice for k which is 7. Hence, we
report skill 7 as the deficient skill.

The reasoning behind this decoding method is that in the ideal situation where every ques-
tion containing skill 7 is answered incorrectly and every question not containing skill 7 is an-
swered correctly, c(7) will be the result vector. Since c(7) is closest to our result vector, it is most
likely that the deficiency is in skill 7. Note that this approach works only when c(1), . . . , c(9)

are pairwise sufficiently apart in terms of Hamming distance. For our example, one can check

379

The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823

that the smallest Hamming distance between c(i) and c(j) for i 6= j is 4. Thus, we can uniquely
decode any result vector that is of Hamming distance no more than 1 from some c(i).

We have illustrated decoding for the case when d = 1. When d > 1, we would need to do the
following. Suppose that c(1), . . . , c(n) are the columns of the d-disjunct matrix for a test design.
Let S denote the set of all nonempty subsets of {1, . . . , n} of size at most d. For example, when
n = 4 and d = 2, the elements of S are

{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

For each A ∈ S, form the binary vector x(A) such that the ith component equals 0 when the ith
component of c(i) is 0 for all i ∈ A and 1 otherwise. To decode the test result, we find A ∈ S
that minimizes the Hamming distance between x(A) and the result vector. We then report skill
i for each i ∈ A as deficient.

There are methods for constructing d-disjunct matrices that are robust to small deviations
from ideal result vectors. Such methods involve the construction of what are known as de-
disjunct matrices which allow one to have result vectors of Hamming distance at most e from
the ideal result vector. The details for the construction are beyond the scope of this paper.
The interested reader is referred to [5].

7 Final remarks

One problem that we set out to study was the design of tests that can identify pairs of skills
that only show up as deficient when they are tested in the same question but not when they
are tested separately. What we have described in this paper will not provide us with sufficient
information to say that skill i and skill j together cause difficulty only when tested together. To
determine such deficiency pair requires a notion of separable matrices described in [2]. We have
not yet succeeded in implementing the method for constructing such matrices. However, even
if we have a proper implementation with current mathematical techniques, it is doubtful that
the tests obtained can be practical because the number of questions required is estimated to
be rather high relative to the number of skills to be tested. A careful analysis of the definitions
of d-disjunct and seperable matrices shows that they have more constraints than is strictly
necessary, especially if one is willing to trade extra cost to analyse diagnostic test results for
smaller matrices. Additionally, as mentioned in Section 6 in the discussion of assumption 1,
when we combine two skills, for example, we will not have to consider all the combinations
of pairs of skills, only a restricted set which is reasonable. Taking advantage of these points,
however, requires more mathematical research in combinatorial group testing.

Acknowledgement

The research of this paper was supported and funded by eCampusOntario. The authors would
like to thank the anonymous referees for their comments and suggestions for improving the
exposition of the paper.

380

The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823

References

[1] Accompanying software and documentation. http://people.math.carleton.ca/

~kcheung/math/apps/gt4mcode.zip.

[2] Chin, F.Y.L., Leung, H.C.N., and Yiu, S.M. (2013): Non-adaptive complex group testing
with multiple positive sets, Thoery and Applications of Models of Computation, 505:11–18.

[3] Dorfman, R. (1943): The Detection of Defective Members of Large Populations, The Annals
of Mathematical Statistics, 14(4):436–440.

[4] Du D. and Hwang, F.K. (1993): Combinatorial group testing and its applications, Singapore:
World Scientific.

[5] Ngo, H.Q., Porat, El, and Rudra, A. (2011): Efficiently decodable error-correcting list
disjunct matrices and applications, in Proceedings of the 38th international colloquium con-
ference on Automata, languages and programming, Volume Part I, 557–568.

[6] Porat, E. and Rothschild, A. (2011): Explicit nonadpative combinatorial group testing
schemes, IEEE Transactions on Information Theory, 57(12):7982–7989.

Appendix

Diagnostic test:

Data file is saved as /home/kcheung/Desktop/diagnostic_test_data.json, please
keep this file for obtain the result using the retrieve result program.

1.
((

(−2)(3−(−4))
)
− (−10)

)
+ (−7)

2.
(
|
(
71)
|
)

+ (−7− 9)

3. ((|−3|+ 2)− 8) + 4

4. −2 +
(

(−8− (−9))7
)

5. −6− (|−7| − 0)

6.
(
|
(
05)
|
)

+ 7

7. ((4 + (−4))− 4) + (−2)

1

381

http://people.math.carleton.ca/~kcheung/math/apps/gt4mcode.zip
http://people.math.carleton.ca/~kcheung/math/apps/gt4mcode.zip

	Introduction
	Motivating example
	Considerations for combining skills
	d-disjunct matrices
	Experimental implementation
	Discussion
	Final remarks

